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Abstract

The Okavango river system in southern Africa is known for its strong interannual variability

of hydrological conditions. Here we present how this is exposed in surface soil moisture, land

surface  temperature,  and  vegetation  optical  depth  as  derived  from  the  Land  Parameter

Retrieval Model using an inter-calibrated, long term, multi-sensor passive microwave satellite

data record (1998-2020). We also investigate how these interannual variations relate to state-

of-the-art  climate reanalysis  data from ERA5-Land. We analyzed both the upstream river

catchment  and  the  Okavango Delta,  supported  by  independent  data  records  of  discharge

measurements,  precipitation  and  vegetation  dynamics  observed  by  optical  satellites.  The

seasonal vegetation optical depth anomalies have a strong correspondence with MODIS Leaf

Area Index (correlation catchment: 0.74, Delta: 0.88). Land surface temperature anomalies

derived  from  passive  microwave  observations  match  best  with  those  of  ERA5-Land

(catchment:  0.88,  Delta:  0.81),  as  compared to  MODIS nighttime LST (catchment:  0.70,

Delta: 0.65). Although surface soil moisture anomalies from passive microwave observations
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and  ERA5-Land  correlate  reasonably  well  (catchment:  0.72,  Delta:  0.69),  an  in-depth

evaluation  over the Delta  uncovered situations  where passive microwave satellites  record

strong fluctuations, while ERA5-Land does not. This is further analyzed using information on

inundated area, river discharge and precipitation. The passive microwave soil moisture signal

demonstrates a response to both the inundated area and precipitation. ERA5-Land however,

which by default does not account for any lateral influx from rivers, only shows a response to

the precipitation information that is used as forcing. This also causes the reanalysis model to

miss record low land surface temperature values as it underestimates the latent heat flux in

certain years.  These findings demonstrate  the complexity of this  hydrological  system and

suggest that future land surface model generations should also include lateral land surface

exchange. Also, our study highlights the importance of maintaining and improving climate

data  records  of  soil  moisture,  vegetation  and  land  surface  temperature  from  passive

microwave observations and other observation systems. 

1 Introduction

Long-term data records of key components of the climate system, known as essential climate

variables (ECV), are important for improving our understanding and predictability of climate

behavior at different time scales (Hollmann et al., 2013; Bojinski et al., 2014). These records

can  help  us  to  determine  the  root  causes  of  observed  climate  change,  e.g.  natural  or

anthropogenic, assess its impacts and associated risks, and support mitigation and adaptation

activities. In 2008, the European Space Agency (ESA) started the Climate Change Initiative

programme  (CCI)  to  develop  these  ECVs  from satellite  data  records.  This  was  done  in

response to the The United Nations Framework Convention on Climate Change (UNFCCC)

need for systematic monitoring of the climate system. Today, the CCI programme covers 21

satellite-based ECV records  (Projects (esa.int), last visited September 2021). 

Surface soil moisture (SSM) is one of these ESA CCI ECVs. These records are based on a

fusion of both passive and active microwave satellite retrievals (Dorigo et al.,  2017). The

current version 6.1 spans from 1979 until 2020 (Scanlon et al.,  2021), and contains three

separate SSM products, which are derived from active, passive, and a combination of active

and passive sensors. The methodology and evaluation of the harmonisation and merging of
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the soil moisture retrievals from multiple satellites is described by Gruber et al. (2019). ESA

CCI SSM data has been used for more than 10 years as the baseline for the annual evaluation

and interpretation of global SSM conditions as reported in the leading BAMS' "State of the

Climate" reports (Van der Schalie et al., 2021). Three datasets are produced as part of the

passive  input  for  the  ESA  CCI  SM,  which  is  SSM  (SSMMW),  but  also  land  surface

temperature (LSTMW), and vegetation optical depth (VODMW). 

SSMMW data sets have been extensively evaluated  with ground observations, models, other

satellite products, and related ECVs like precipitation (e.g. Hirschi et al., 2021; Beck et al.,

2021; Dorigo et al., 2015; Al-Yaari et al., 2019; Albergel et al., 2013; Loew et al., 2013).

VODMW has been used in multiple studies with a focus on seasonal and interannual vegetation

dynamics (e.g. Liu et al., 2015; Moesinger et al., 2020; Teubner et al., 2019) or specifically

on L-band VOD characteristics (e.g. Schwank et al., 2021; Bousquet et al., 2021; Rodriguez-

Fernandez et al., 2018). Research on the quality of LSTMW (e.g. Holmes et al., 2009; Holmes

et al., 2015) remains limited. The robustness of the interannual variability signals within these

multi-decadal data records is still not always clear, and a combined assessment of all three

variables is necessary for understanding these datasets, as the current joint retrieval algorithm

make their values fundamentally intertwined (Owe et al., 2008). Such information provides

unique  opportunities  for  both  monitoring  and  seasonal  forecasting,  e.g.  over  Africa  (e.g.

Cook et al., 2021). 

The purpose of this paper is to improve insight into the interannual signals of the SSMMW,

LSTMW and VODMW by presenting a case study over a region with a complex hydrological

system, i.e. the Okavango, and how their skill compares to state-of-the-art climate reanalysis

data from ERA5-Land (Muñoz-Sabater, 2019; Muñoz-Sabater, 2021). ERA5-Land aims to

quantify the water and energy cycles over land in a consistent manner, therefore allowing the

characterisation of trends and anomalies. Although ERA5-Land (E5) data is known to be of

high quality in many regions around the globe, for use in any specific regions this needs to be

properly evaluated.  Therefore,  this  dataset  does not only function as a benchmark in this

study, but will also be analyzed in more detail to evaluate its ability to properly detect the

natural dynamics and variability in the Okavango and how this compares to the signal of the

passive microwave-based datasets. Other datasets are used as support for determining which

dataset (i.e., either PMW or E5L estimates of the same variable) is more likely to reflect true

3

60

65

70

75

80

85

90

https://doi.org/10.5194/hess-2021-637
Preprint. Discussion started: 19 January 2022
c© Author(s) 2022. CC BY 4.0 License.



conditions. This research can help to improve the synergy between EO data sets and land

surface models, and to identify both strengths and shortcomings of either one. 

More specifically, the Okavango Delta and Okavango River Catchment in southern Africa

were selected as the study area. The Okavango Delta (Republic of Botswana, 2013) consists

of permanent  marshlands and seasonally flooded plains,  and is  one of the few endorheic

“delta” systems (geomorphologically Okavango Delta is an alluvial fan,  Kgathi et al. 2006)

that does not flow into the ocean. It is an exceptional example of the interaction between

climatic, hydrological and biological processes, leading to a unique mix of flora and fauna,

and has therefore been included in the UNESCO World Heritage List  since 2014. Three

features in the local hydrological system stand out, i.e., the strong interannual variability, the

lateral  water  influx  component  of  the  Okavango  River  into  the  Delta,  and  the  seasonal

characteristics with a lag between rainfall, river discharge and flooding. Unfortunately, it is

expected that global warming will affect this natural variability in the hydrological cycle over

the Okavango Delta (Wolski et al., 2014; Wolski et al., 2012), for example reducing high-

water  periods  like  in  2009-2011.  These  kinds  of  negative  impacts  increase  the  need  for

reliable monitoring capabilities.  

The structure of the paper is as follows. Chapter 2 introduces the study area and includes the

exact regions of interest (ROIs) that are used for the data extraction. Sect. 3.1 describes the

passive  microwave  data  and  other  data  sources.  Sect.  3.2  explains  the  methodology,

concerning the inter-calibration (3.2.1), LPRM (3.2.2), evaluation of the dataset anomalies

(3.2.3.),  and of the river, flood and precipitation contribution to SSM anomalies over the

Okavango Delta (3.2.4). Chapter 4, 5 and 6 provide the Results, Discussion and Conclusions

of these different steps. 

2 Research Area

With a length of approximately 1600 km, the Okavango river is one of the largest in southern

Africa (Muzungaire et al. 2012). The river is known globally for its large terminating inland

“delta”.  The Okavango Delta  is  a  large  seasonally  pulsed  inland wetland,  a  mixture   of

aquatic vegetation, open water, and dry land with the actively inundated area covering a part

of the 28,000 km2 alluvial cone (Ringrose et al., 1988). 
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Figure 1: The research area comprising ROI1 (a part of the upstream area of the Cubango and the Cuito 

River) and ROI2 (the surrounding of the Okavango Delta) in relation to the Okavango drainage basin 

(grey). The black dot marks the location of the discharge station at Mohembo.

In line with both the interannual variation in local and upstream rainfall and the longer-term

effects of surface-groundwater interactions, substantial interannual variability in the Delta’s

inundated area was recorded over the period 1932-2000 (Wolski and Murray-Hudson, 2008),

with annual minima of about 3000 km2 up to annual maxima of 12000 km2 (Wolski et al.,

2017; Gumbricht et al., 2004). Whereas estimates for the total annual water budget stemming

from direct rainfall in the Okavango Delta ranges between 25% to 50%, the Okavango River

inflow accounts for the other 50% to 75% (McCarthy et al., 1998; McCarthy et al., 2000;

Ashton and Manley, 1999; Ashton and Neal, 2003, Wolski et al., 2006). 

In this study we focus on only two perennial rivers in the Okavango catchment - the Cubango

River and the Cuito River (Ashton and Neal, 2003). Data was extracted from the catchment

area within ROI1 of Figure 1. These rivers originate in Angola and are a vital lifeline to the
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Okavango Delta with an average inflow at Mohembo of 9863 Mm3 in the period 1932-2001

and a 71.4% contribution to the total water budget of the Delta. 

 

The Angolan part of the basin is characterized by a subtropical climate, while in Botswana

and Namibia parts are classified as semi-arid (Kgathi et al. 2006). During drought years in the

1980s and 1990s, the annual inflow at Mohembo reduced up to 45% (McCarthy et al., 2000;

Ashworth,  2002;  Ashton,  2003;  Ashton  and  Neal  2003)  which  then  coincided  with

proportional declines of the Okavango Delta outflow to the Thamalakane and Boteti rivers

(Ashton & Manley 1999; Ashworth 2002, Ashton and Neal 2003). Throughout these periods

a growing demand for water arose in Botswana and Namibia (MGDP, 1997; Ashton, 2003).

Overall, the dry phase was caused by multi-decadal oscillations in rainfall, and likely related

to processes of internal variability in the climate system (Wolski et al., 2012).

ROI1 and ROI2 were chosen to study how their significantly different water influxes affect the

signal of the data sources used in the evaluation. The Delta is of particular interest, as it is

mostly driven by a strong and highly variable lateral influx from the Okavango River that

creates a pattern of seasonally varying wetness that is asynchronous or off-phase with the

rainy season.  

3 Material and Methods

3.1 Data

3.1.1 Passive microwave observations

The three main variables that are used for the analysis are surface soil moisture (SSMMW),

vegetation optical depth (VODMW) and land surface temperature (LSTMW). These variables are

derived from passive microwave observations from multiple satellite sensors that observe in

similar frequencies and overlap in time. 

The Advanced Microwave Scanning Radiometer for EOS (AMSR-E, Kawanishi et al., 2003)

is a twelve-channel, six-frequency, passive microwave radiometer developed by the Japan

Aerospace Exploration Agency (JAXA) and was active between 2002 and 2011. AMSR-E is
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part of the payload carried onboard the Aqua (EOS PM-1) NASA scientific research satellite,

which  has  a  polar  orbit  with  a  1:30  pm  /  am  equatorial  crossing  time  for  ascending  /

descending swaths. AMSR-E was launched to obtain data to improve our understanding of

global-scale  water  and  energy  cycles  and  played  a  key  role  in  the  development  of  soil

moisture  retrieval  algorithms.  For  the  technical  specifics,  see  Table  1.  Only  descending

brightness temperature data was used for this study.

The Advanced Microwave Scanning Radiometer 2 (AMSR2, Imaoka et al., 2012) onboard

the GCOM-W1 satellite is the follow-up of AMSR-E, and was launched in 2012. Although

incorporating improvements, the general setup is similar to AMSR-E (see Table 2). However,

unfortunately there is a gap between AMSR-E and AMSR2 of about 9 months, making a

direct intercalibration of time series complicated. 

To overcome this gap and to extend the passive microwave observation record back to 1998,

we make use of the Tropical Rainfall Measuring Mission's (TRMM, Kummerow et al., 1998)

Microwave Imager (TMI). TMI observes in X-band and higher frequencies. TRMM is not in

a polar orbit because of its focus on the Tropical regions and therefore does not cover the

entire  globe.  Data  is  only  available  between  40°N  and  40°S  and  due  to  its  orbital

characteristics has a variable crossing time, see Table 1. Only brightness temperature data

was used that  had a  local  overpass  time between 10:30 pm and 4:30 am,  to  best  match

AMSR-E and AMSR2.

For this study we use X-band brightness temperature data due to its availability on all three

sensors. Ka-band is the main frequency used for the LSTMW. All brightness temperatures were

collected and gridded into a 0.25° grid for the Okavango Delta area. 
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Table 1: Overview and characteristics of passive microwave satellite sensors used in the study.

Sensor Provider Temporal 

coverage 

Bands Spatial 

coverage

Swath Width Equatorial 

crossing time 

Data level

Advanced Microwave 

Scanning Radiometer for 

EOS (AMSR-E) on AQUA

JAXA / 

NASA

07/2002 –

10/2011

C, X, Ku, 

K, Ka, W

Global 1445 km Asc: 13:30 

Desc: 1:30

L2A v3

Advanced Microwave 

Scanning Radiometer 2 

(AMSR2)  on GCOM-W1 

JAXA / 

NASA

05/2012 – 

ongoing

C, X, Ku, 

K, Ka, W

Global 1450 km Asc: 13:30 

Desc: 1:30

L1R 

Tropical Rainfall Measuring 

Mission's (TRMM) 

Microwave Imager (TMI)

NASA 01/1998 –

12/2013

X, Ku, K, 

Ka, W

N40o to S40o 780 or 897 km 

after orbit boost

8/2001

Varies (non 

polar-orbit)

L1C

(XCAL,

Berg  et

al., 2016)

3.1.2 Ancillary data sets 

In  our  analysis  we  use  several  ancillary  data  sets  to  determine  the  ability  of  passive

microwave-based  satellite  data  records  to  correctly  capture  interannual  variations.  These

ancillary datasets are split into two types:

Firstly, data was used from the ERA5-Land climate reanalysis model (Muñoz-Sabater, 2019;

Muñoz-Sabater,  2021), which is an enhanced resolution (9 km x 9 km) land-only offline

rerun of the ECMWF ERA5 climate reanalysis (Hersbach et al., 2020). SSME5, LSTE5 and

PRE5 were extracted. For both SSME5 and LSTE5 the Layer 1 (0-7cm) was used. LAIE5 was

excluded from the analysis  as it only contained a climatology based on satellite EOs (no

interannual variability). ERA5-Land data was extracted from the Copernicus Climate Change

Service (C3S) Climate Data Store (CDS). As it has an hourly resolution, the values closest to

the satellite overpasses were chosen. Data covers the complete period of 1998 to 2020.

Secondly,  independent  observational  datasets  are  used,  which  have  the  sole  purpose  of

functioning as a benchmark. These consist of the Okavango River Discharge measurements

(ORD, Okavango Research Institute, 2021), Okavango Delta Inundated Area (ODIAMD), Leaf

Area Index (LAIMD,  Yang et al.,  2006) and nighttime LST (LSTMD,  Wan, 2014) from the

Moderate  Resolution  Imaging  Spectroradiometer  (MODIS),  and  precipitation  from  the

NASA Global Precipitation mission’s IMERG product (PRIM, Huffman et al., 2015).
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A majority  of  the  water  entering  the  Okavango  Delta  originates  from the  Delta  inlet  at

Mohembo. Therefore, we use ORD from the Mohembo station (see Fig. 1) to indicate the

long term variability of the lateral inflow into the Delta. Measurements, using E-type gauge

plates,  are  done  on  a  regular  (fortnightly)  basis  by  the  Botswana  Department  of  Water

Affairs,  and the data are shared by the Okavango Research Institute  of the University of

Botswana. The advantage of using this data set is that it has a long historical record dating

back to 1974. For this study, data was extracted for the 1998 to 2020 period. 

ODIAMD represents the inundated area in the Okavango Delta,  and is derived from using

shortwave infrared (SWIR) observations from the MODIS sensor (Wolski et al., 2017). More

specifically data for band b7 from the MCD43A4 product was used. Reflectances of training

areas  are  used  to  dynamically  determine  the  threshold  used  for  the  derivations  of  the

inundation. An automated and up to date monitoring tool for the flooding extent can also be

found online (http://www.okavangodata.ub.bw/). 

The LAIMD is defined as the one-sided green leaf area per unit ground area (Chen et al., 1992;

Yang et al., 2006). The LAIMD for the study area, including both the drainage Catchment and

the Delta, was extracted from the MOD15A2H Version 6 MODIS dataset. This is an 8-daily

product that uses the best available pixel within the 8-day period. The product has a spatial

resolution of 500 m, and the mean was extracted for the complete ROIs. 

1 km nighttime, about 1:30 am, surface temperature from MODIS was extracted from the

MYD11A2.006 product, which is based on the average over 8 days of all available LSTMD

observations. For this study the mean values of the two areas were extracted. The temporal

coverage is from February 2000 to the end of 2020 for the LAIMD and July 2002 to the end of

2020 for the LSTMD. 

For PRIM, data was used from the Integrated Multi-satellitE Retrievals for GPM (IMERG,

Huffman et al., 2015), which is produced at 0.1° resolution. IMERG is a unified algorithm

that  provides  rainfall  estimates  based  on  a  combination  of  observations  from  multiple

passive-microwave sensors, infrared sensors and precipitation gauges. Mean daily data was

used from the GPM_3IMERGDF version 6, covering June 2000 to December 2020. 
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3.2 Methods

3.2.1 Intercalibration of PMW brightness temperatures

The  intercalibration  of  AMSR-E,  AMSR2  and  TRMM  is  based  on  the  methodology

described in Van der Schalie et al. (2021). In this approach a two-step linear regression model

is used, which first defines a global slope and afterwards a local intercept. Secondly, it uses a

cost function that not only minimizes the differences between brightness temperatures of the

individual polarizations, i.e. vertical (V) and horizontal (H), but also for the ratio between the

two. This is because the Land Parameter Retrieval Model (LPRM, see next section) used for

the  SSMMW,  VODMW and  LSTMW retrievals  is  very  sensitive  to  the  polarization  ratio.

Inconsistencies in this ratio between different sensors can lead to an imbalance in how the

radiative  transfer  model  distinguishes  between  the  emission  from  the  soil  and  the  from

vegetation, respectively, leading to biases in the resulting retrievals.

This intercalibration methodology, previously applied only to the Ku-, K- and Ka-band, is

here also used for the X-band data. After retrieving SSMMW, VODMW and LSTMW from the

intercalibrated individual sensors, a linear regression is applied between the different sensors

using their  respective overlap.  This is done to remove any inconsistencies.  The improved

inter-calibration  between  sensors  can  lead  to  a  reduced  need  for  break  corrections  (e.g.

Preimesberger et al., 2020) and help to better address related issues at the source. 

As this study focuses on anomalies at a seasonal timescale, the temporal coverage obtained

by the current three sensors is sufficient. However, as was shown by Van der Schalie et al.

(2021) and as is done for the passive microwave based data input for the ESA CCI SM, other

sensors like GPM, FengYun-3B and FengYun-3D can be included without issues, resulting in

improved revisit times and coverage. 

3.2.2 Land Parameter Retrieval Model

The Land Parameter Retrieval Model (LPRM, Owe et al., 2008) is a retrieval algorithm that

simultaneously solves for SSMMW, VODMW and LSTMW without the use of any ancillary data

sources on vegetation or temperature. The model is based on the tau omega (τ-ω) model (Mo

et al., 1982), which simulates the top-of-the-atmosphere brightness temperatures by modeling
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the  individual  contribution  of  the  soil,  vegetation  and  atmosphere.  LPRM  mainly

distinguished  itself  from other  algorithms  through  the  analytical  derivation  of  the  VOD

(Meesters et al., 2005) and the use of Ka-band observations for the LSTMW (Holmes et al.

2009). Here we use the latest version of LPRM developed by Van der Schalie et al. (2017). 

LPRM  is  currently  the  main  algorithm  used  for  all  the  passive  microwave-based  SSM

retrievals in ESA CCI SM (Dorigo et al., 2017). Due to its unique analytical solution for the

derivation of VODMW that uses no external source of information for the vegetation, LPRM

has also been used in several studies of long term vegetation dynamics (Liu et al., 2012; Liu

et al., 2015), land degradation (Liu et al., 2013; Van Marle et al., 2017) and the development

of a climate data record of VODMW (VODCA, Moesinger et al., 2020). 

3.2.3 Evaluation of anomalies

To have a better understanding of the quality of the different datasets in detecting interannual

variability and anomalies, a two-step comparison analysis is done. First, the anomalies are

visualized  over  time  and  their  dynamics  assessed.  Second,  the  relations  between  related

datasets  are  quantified  using  correlations  and visualized  using  scatter  plots.  This  is  done

separately for the catchment and the delta.

The SSMMW is compared to the SSME5, both representative for the moisture conditions in the

first few centimeters of the soil. As this is a direct comparison, in this step the focus will be

on  their  similarity  and  differences,  without  analysing  what  causes  it.  Additionally,  an

extensive analysis is conducted (Section 3.2.4) to determine which of the data sets most likely

reflects the ground conditions, based on their relation to ORD, ODIAMD and PR.  

For VODMW there is a comparison with another regularly used satellite-based datasat,  LAIMD.

Theoretically the VODMW represents the attenuation of the microwave emission through the

vegetation cover, which is related to both the structure and moisture content of the vegetation.

The LAIMD is representative of the projected single-sided green leaf area per unit ground area.

Although VOD and LAI are fundamentally  different,  it  is  assumed that  for dynamic and

sparsely  to  moderately  vegetated  regions,  i.e.  excluding  forests,  the  X-band  also  mostly

measures  the  response  of  the  leaves  with  the  microwave signal  via  the  vegetation  water

content (Jackson & Schmugge, 1991). Further defining the quality and ability of VODMW to
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detect  interannual  variability  can  be  especially  useful  in  improving  the  applicability  and

understanding  of  independent  vegetation  data  records  based  on  passive  microwave

observations like VODCA (Moesinger et al., 2020).  

Here the anomalies of LST from three different sources, e.g. passive microwave (LSTMW),

model (LSTE5,) and thermal infrared (LSTMD), which all represent the skin temperature of the

land surface - are evaluated. 

Because the focus is on the (seasonal) variability over a multi-decadal timespan, a 91 day

moving average (±45 days) is first applied to the data sets. The climatology for the anomaly

calculation is  based on the 2003-2020 period,  as the LSTMD is  only available  from 2003

onwards and overall consistency for the baseline is preferred. As the window for the moving

average is 91 days, little impact is assumed from data loss due to cloud cover in the MODIS

datasets.  

It is worth keeping in mind that none of these datasets provide the “truth” or measure exactly

the same quantity, therefore differences are to be expected. In the analysis component (see

following Section), extra attention will be given to a specific case in the Okavango Delta

where a clear divergence is observed between the different SSM datasets. 

3.2.4 Analysis of river flooding and precipitation contribution to soil moisture 

anomalies in the Okavango Delta

As further  in  this  study (Sect  4.1) the signal  of  the two SSM data sources  (SSMMW and

SSME5) is shown to diverge over the Okavango Delta, an in-depth analysis is set up to explain

the main drivers of their respective signals. This can help to better understand what the SSM

data sets represent and give users insight in how to use them for their research activities and

applications.  

A first step in this is to directly compare the SSM data sets to the ORD, ODIAMD and both

PRE5 as  PRIM.  These  data  sets  can  provide  insight  into  what  is  the  driver  of  the  SSM

anomalies in this region. As described in section 2, about 50%-75% of the total influx of

water into the Okavango Delta comes from the ORD, while PR on average contributes 25%-

50%, so we expect to see this reflected in the SSM either via the ORD or the ODIAMD signals.
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Following this, a multiple linear regression exercise is conducted. This is done to look into

the influence of the ODIAMD, ORD and PR signals on the SSMMW and SSME5 anomalies in

the  Delta.  This  allows  us  to  determine  the  drivers  of  the  SSM  anomalies,  and  more

importantly, how they differ between the two. Instead of using the absolute anomalies in this

analysis, the Z-score is preferred, as this normalization removes issues with conversion of

units.  A visualisation  will  also be made of  the  climatologies  from the different  datasets,

including their 10 and 90 percentiles, to further define the connection and time lag between

the signals of the different parameters. 

4 Results

4.1 Soil Moisture

Figure 2 shows the anomalies of SSMMW and SSME5 over the Okavango catchment and Delta,

with Figure 2E/F comparing them directly to each other in a scatter plot. In both areas the two

datasets  correlate  moderately well,  0.717 and 0.694 respectively.  In the Delta however,  a

mismatch occurs in some occasions, leading to a visible flat line in the scatterplot where the

anomalies of SSMMW vary while the anomalies of SSME5 are close to 0 (Fig. 2E). The signal

SSMMW  anomalies over the Catchment, and SSME5 anomalies over both the catchment and

Delta, seem to have clear short-term variability as can be seen from the peaks in the wet

season, while the dry season remains mostly stable around 0. Only the anomalies of SSMMW

over the Delta diverge from this and show a more multi-year variation, with highs in the

years around 2011 and lows in the early and late periods of the time period. These cases will

be further analyzed in Sect. 4.4 in combination with the ORD and PR.  

The absolute range of the anomalies differs to some extent between the two products: SSMMW

anomalies range between -0.03 and 0.025 m3m-3 in the Catchment and -0.05 and 0.05 m3m-3

in the Delta, whereas SSME5 anomalies range between -0.10 and 0.06 m3m-3 in the Catchment

and -0.08 and 0.10  m3m-3 in the Delta. However, the dynamics of the signal are very similar.
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Figure 2: SSMMW and SSME5 absolute anomalies over the Okavango Catchment (A,B,E), with the 

intensity of the coloring based on the z-score of the positive (blue) and negative (red) anomalies, and the 

Okavango Delta (C,D,F) in time series and density plots. A daily time step is used from the moving 

average data set. 

4.2 Vegetation Optical Depth

Figure 3 shows the anomalies  of VODMW and LAIMD over the Okavango Catchment  and

Delta, with Figure 3E/F again showing a direct comparison in a scatter plot. The two datasets

have a 0.741 correlation over the Catchment and up to 0.876 in the Delta. Generally, a similar
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pattern is visible for both regions. One exception can be seen during the 2008 to 2011 period

in the Catchment, where the VODMW anomaly remains high throughout multiple years, while

the overall above average LAIMD anomalies fluctuate to a greater extent. The lowest values in

the Delta were detected early in the study period, with VODMW recording an almost -0.08

anomaly during 1998 and 2003. This 2003 event is also seen in the LAIMD dataset, while no

data is available for 1998. In more recent years, no negative anomalies of that strength have

been recorded.  
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Figure 3: VODMW and LAIMD anomalies over the Okavango Catchment (A,B,E), with the intensity of the

coloring based on the z-score of the positive (green) and negative (brown) anomalies, and the Okavango 

Delta (C,D,F) in time series and density plots. A daily time step is used from the moving average data set. 

4.3 Land Surface Temperature

Figure 4A/B shows the anomalies of LSTMW over the Okavango Catchment and Delta, with

Figure 4B/C/D/E/F/G showing a direct comparison in a scatter plot between LSTMW, LSTE5

and LSTMD.  Because  of  the  high correlation  between LSTMW and LSTE5,  of  0.884 in the

Catchment and 0.809 in the Delta, the decision was made to only show the LSTMW time series

to focus more on the scatterplots of the three different products. The correlation of LSTMW

against LSTMD is much lower, with 0.643 and 0.255 for both regions, showing a low relation

in  the  Catchment.  LSTE5 compares  better  to  LSTMD with  a  correlation  of  0.702  in  the

Catchment  and  0.650  in  the  Delta,  however  this  is  still  significantly  lower  than  the

comparison  with  LSTMW.  The  absolute  ranges  in  the  anomalies  as  detected  by  the  three

products are very similar. 

The slightly lower correlation of LSTMW against LSTE5 in the Delta is mostly caused by the

period 2010 and 2011, when the LSTE5 anomaly (between -1 and 1 °C) is smaller than that of

LSTMW  (between -3 and -1 °C). Below-average temperatures are recorded for a prolonged

period  between  2006  and  2014  in  both  regions.  For  the  Delta,  the  highest  temperature

anomalies are recorded in 2019 and 1998. In the Catchment, this is seen in 2015 and 2019. 
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Figure 4: LSTMW time series over the Okavango Catchment and the Okavango Delta (A,B), with the 

intensity of the coloring based on the z-score of the positive (red) and negative (blue) anomalies. For the 

density plots; LSTMW compared to LSTE5 (C,F), LSTMW compared to LSTMD (D,G), LSTE5 compared to 

LSTMD (E,H). A daily time step is used from the moving average data set for the density plots.

4.4 River and precipitation contribution to soil moisture anomalies in the Okavango 

Delta

Figure 5A, 5B and 5C show the anomalies of the ORD, ODIAMD and PRE5 over the Delta,

which  have  visibly  different  signals.  The  ORD  shows  a  strong  multi-year  signal  with

especially high values recorded from 2009 to 2012. Outside of that period, with the exception
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of 2004, values generally lay below the 2003 to 2020 climatology. The OIADMD shows a

signal that is relatively similar to that of the ORD, however smoother, with less variability

and lagging behind. The PRE5 over the Delta shows mostly values around 0 mm during this

2009 to 2012 period, and otherwise varies more dynamically from year to year with values

above and below the climatology. 

Although SSMMW and SSME5 anomalies have an overall correlation of 0.694 in the Delta,

Figure 2F shows many occasions  where  the  SSMMW had negative  or  positive  anomalies,

while  the SSME5 did not diverge from the climatology.  To better  assess what causes this

opposite signal, the climatology (using ±15 days moving average) of different parameters are

provided  in  Figure  6,  including  their  10%  and  90%  percentiles.  Here  one  can  see  the

difference in the dynamics between SSMMW (Fig. 6A) and SSME5 (Fig. 6B). The SSME5 shows

a clear relation to the PR datasets (Fig. 6G/H), while the SSMMW still picks up a moisture

signal between April and September. When looking at the ORD and OIADMD, these are the

moisture-related signals that still show strong variability in this time of the year, indicating

that the SSMMW could also contain information from other sources than PR. On a side note,

Figure 6 shows that besides matching well with long term anomalies, LSTMW and VODMW

also have a strong matching intraseasonal signal with LSTE5 and LAIMD, respectively.   

Table 2 presents the results of a multiple linear regression to determine the drivers of the

observed/modelled SSM anomaly signal in the Delta, using ODIAMD, ORD and PR as inputs.

The Z-score anomalies are used to improve the comparability between the different datasets

and their  weight.  The  results  show that  the  weighting  for  SSMMW consists  of  a  balance

between the PR in the Delta and the ODIAMD, with an overall slightly higher weight for the

ODIAMD, and leading to a maximum correlation of 0.843 when using PRE5 over PRIM. This

leads to a RMSE of about 0.44 for the Z-score. The SSME5 anomalies are clearly, driven by

the PRE5 anomalies, reaching a correlation of 0.866. The correlation strongly decreases to

0.64 when the PRE5 is replaced with PRIM, which reflects back in the RMSE of the Z-score

anomalies, which increases from about 0.37 to 0.57. 
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Table 2: Results of the multiple linear regression for estimating the relationships between the Z-score

anomalies of SSM, PR, ORD, and ODIAMD. 

Prediction Input 1 Input 2 Correlation RMSE Weight 

input 1

Weight 

input 2

SSMMW PRE5 ORD 0.780 0.490 0.527 0.575

PRIM ORD 0.704 0.499 0.485 0.517

PRE5 ODIAMD 0.843 0.431 0.436 0.670

PRIM ODIAMD 0.806 0.437 0.396 0.668

SSME5 PRE5 ORD 0.866 0.370 0.878 0.166

PRIM ORD 0.636 0.571 0.735 0.163

PRE5 ODIAMD 0.866 0.376 0.880 0.162

PRIM ODIAMD 0.646 0.564 0.714 0.190

Figure 5: ORD, ODIAMD and PRE5 time series over the Okavango Delta (A,B,C), with the intensity of the 

coloring based on the z-score of the positive (blue) and negative (red) anomalies. 
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Figure 6: Mean climatology (colored thick line) and both 10% and 90% percentiles (black dashed lines) 

for SSMMW (A), SSME5 (B), LSTMW (C), LSTE5 (D), VODMW (E), LAIMD (F), PRIM (G), PRE5 (H), ODIAMD (I)

and ORD (J). Data using a ±15 days moving average was plotted to distinguish between intraseasonal 

signals. 
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5 Discussion

Over both the Delta and the Catchment,  a remarkably strong relationship between the LAIMD

and VODMW  was observed, even though fundamentally they measure two different things.

The relationship is slightly weaker over the Catchment, where you see more memory in the

VODMW  dataset as compared to the LAIMD.  This could be caused by a buildup of woody

biomass, as this would theoretically be better detected with the VODMW than with the LAIMD.

The period of sustained high VODMW in the catchment during the 2008 to 2012 period aligns

well with the PRE5, which recorded 5 years of above-average rainfall over the Catchment. The

ORD shows this increase above the climatology starting only the year afterwards (from 2009

to 2012), showing the lagged response of the system after a prolonged dryer period.   

The VODMW signal in the Delta is more complex:  the peaks in VODMW do not coincide with

prolonged time spans of high water availability, but seem to peak during shorter periods of

increased water availability during overall conditions with medium to low ODIAMD. This can

be explained by what the VOD represents: in this case, it is related to biomass that is above

the surface.  During prolonged periods  of high water,  a  larger  extent  of these regions are

flooded.  Therefore,  within  the  0.25°  pixel,  data  that  is  not  corrected  for  dynamic  water

bodies, the vegetation covered by these flooded areas might not be properly measured by the

VODMW signal. As it is also known that VODMW values can be underestimated during flooded

conditions (Bousquet et al., 2021). Note that the negative SMMW and ORD anomalies in 2019

have not led to the same intensity of vegetation decline, while in 2019 the ODIAMD was at a

record low in the last 20 years. With the very strong relationship over the Delta between the

anomalies of both VODMW and LAIMD - two independent satellite-observed datasets - these

observations very likely reflect the conditions on the ground. These results show that future

use of even longer VODMW records can help monitor complex regions like the Okavango

Catchment and Delta. For example, following the progress on VODCA -which aims to build

a data record similar to the ESA CCI SSM for VODMW -future releases will also include the

latest calibrated datasets as used here. 

Three different sources of LST were tested over the Okavango Catchment and Delta. The

highest  correlation  can  be found between the LSTE5 and  LSTMW,  which  most  likely  best

represent  the  actual  ground  conditions.  Although  LSTMD performs  less  well,  the  better

correlation  of  LSTMD against  LSTE5 than  LSTMW might  indicate  that  the  overall  best
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performing dataset is the LSTE5. However, in many cases an observation-based long term

dataset (e.g. the LSTMW) is still preferred. For example, in 2010 and 2011 the LSTMW has the

lowest temperature anomalies on record in the Delta, going to -3 K, while the LSTE5 remains

more neutral. This is most likely caused by the lack of lateral water influx modelling from the

ORD and  following  ODIAMD in  ERA5-Land  (Muñoz-Sabater  et  al.,  2021),  as  shown in

Section 4.4. The lack of moisture input into the model can lead to an underestimation of the

latent heat flux and overestimation of the sensible heat flux, leading to an unrealistically high

LSTE5. 

In the Delta,  2015, 2016,  and 2019 have been warm compared to  the years  before.  The

LSTMW and LSTE5 both show that these are not unique occurences, as similar high values

have been detected on multiple occasions before 2006. These seem to occur during periods of

lower ODIAMD, which shows dry anomalies of varying strength in these years. The catchment

does see its highest and more prolonged peaks only in the last years, i.e. 2015 and 2019.

These high peaks coincide with the strongest negative anomalies found for both SSMMW and

SSME5, linking the high temperature and reduced moisture availability.        

The  precipitation-driven  SSM  in  the  Catchment  aligns  closely  with  SSMMW and  SSME5

datasets.  Especially  in  the period after  2010, the signal  in  the anomalies  is  very similar.

Before 2010, it appears that the SSMMW shows slightly stronger dynamics than SSME5. In the

Delta a mismatch is clearly seen between SSME5 and SSMMW, especially with regard to the

duration of the dry and wet peaks, but also in their intensity. With the knowledge that about

50%-75% of the water flux into the Delta comes from the ORD, and about 25%-50% from

the PR, an analysis using Z-score anomalies was conducted to determine the driving signals

behind the SSM anomalies, using the ORD, ODIAMD and PR as inputs. For SSME5, an almost

one-to-one relationship was found with the PR, with little to no effects from the ORD or

ODIAMD. The SSMMW anomalies on the other hand, are almost equally driven by PR and

ODIAMD, which is much closer to the actual balance between the ORD and PR water fluxes

for the Delta as expected from literature. 

The almost one-to-one relationship between the SSME5 and PRE5, and lack of signal related to

the ORD due to the missing lateral water influx modelling, or alternatively dynamic open

water bodies using the ODIAMD, in ERA5-Land indicates that in a complex region like the

Okavango  Delta  important  forcings  are  missing.  This  for  example  could  also  cause  the

difference in LSTMW and LSTE5 in 2010 and 2011, as the model cannot correctly convert the
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incoming radiation  into sensible  and latent  heat  fluxes  when the  moisture  conditions  are

inaccurate.  On  the  other  hand,  while  the  SSMMW signal  provides  users  with  a  better

representation of total moisture conditions within the catchment, it can also not be interpreted

as a pure SSM signal here, as it includes moisture information driven by the ODIAMD. In a

dynamic environment as the Okavango Delta, users should therefore clearly define what they

require of such datasets to avoid unwanted side effects.    

6 Conclusion

The anomalies of three different parameters, i.e. SSMMW, LSTMW and VODMW, were evaluated

against other satellite-observed data sets and data from the ERA5-Land climate reanalysis.

Although SSMMW and SSME5 correlate moderately well, structural differences were detected

over the Okavango Delta, where SSMMW contains a clear multi-year signal that is not in the

SSME5. To determine the cause of this mismatch, an analysis was conducted to determine the

impact of three sources of water into the Okavango Delta, i.e. the ORD, ODIAMD and the PR,

on the SSM signal. The SSMMW signal appears to be driven about equally by the ODIAMD and

the PR, while SSME5 is almost fully driven by the PRE5. This indicates that ERA5-Land does

not properly include the lateral influx of the Okavango River, and therefore the use of SSMMW

is preferred in this region. 

For the VODMW, a direct comparison against LAIMD was made. Although the two parameters

measure  two  different  characteristics  of  the  vegetation,  good  correlations.  Over  the

Catchment, a stronger multi-year signal was detected in the VODMW, which could be related

to the build up of biomass, to which VODMw is theoretically more sensitive. For the Delta,

both datasets are impacted by the increase in open water during long wet periods that can

suppress  the  observed  vegetation.  This  strong  similarity  as  observed  between  the  two

datasets, indicate that it is very likely they are both representative for the in situ conditions.  

LSTMW was shown to be of good quality and correlated well with LSTE5 (>0.8). LSTMD  still

managed to reach a significant correlation with LSTE5, but not with LSTMW, indicating that in

general LSTE5 could be of highest quality of the three when looking at the temporal signal.

However, at the record-low values in LSTMW over the Delta in 2010-11, corresponding to the

peak years of the ORD and ODIAMD, it seems that LSTE5 cannot properly model the sensible
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and latent heat fluxes because it is missing the lateral water component. This can have a large

impact  for  detecting  extremes,  which  are  especially  important  in  the  current  changing

climate.

The findings of this research show the importance of not only relying on climate reanalysis,

but also the need for further development and maintenance of observational datasets like the

ones derived from passive microwave observations. For example within the ESA CCI Soil

Moisture datasets, but also the development of new CDRs on VODMW like VODCA. Their

ability to properly detect anomalies and extremes is very valuable in climate research, and

can especially  help to improve our insight in complex regions  where the current  climate

reanalysis datasets reach their limitations. With microwave data being available from 1978

onwards, the data can be used for long-term climate studies, near-real-time applications, e.g.

monitoring  complex  natural  systems  like  the  Okavango  Delta,  and  to  constrain  climate

reanalysis through data assimilation techniques to overcome known model weaknesses.       
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